DUCTMATE.

THE ENGINEER, FABRICATOR AND CONTRACTOR'S GUIDE TO

DUCTMATE FLANGE 25/35/45

How an Innovative Rectangular Duct Connection System is Transforming the HVAC industry.

WHITEPAPER PREPARED BY: DCL SUPPLY LTD.

d

DCL Supply
HVAC Commercial Industrial

DUCTMAIE

 Pioblems

 Pioblems}

Problems - Solved!

Heavy duty ductwork requires heavy duty connections and the Ductmate 45 connector system provides better solutions! Equal in strength to a SMACNA K Class connection, the Ductmate 45 system is aesthetically pleasing compared to Companion Angle, installs easier, and is engineered to exceed industry standards on even the largest applications. 100\% US Steel, American and Union Made, backed by rigorous testing and our industry leading guarantee - large scale critical air systems are simply better with the Ductmate 45 system. Problems - Solved!

TABLE OF CONTENTS

■ Ductmate Flange Goes to Hollywood p. 4
■ What makes Ductmate Flange a Superstar p. 6
■ TDC / TDF vs DM Flange p. 7
■ How They Compare: Ductmate 25 / 35 / 45 p. 8

- 6 Steps to Install Ductmate Flange p. 9
■ Key Specs for Engineers and Installers p. 15
■ Products Related to the Ductmate Flange System p. 17
■ About DCLSupply Ltd p. 19
■ Sources p. 20
■ APPENDIXA:DUCTMATE CONSTRUCTION STANDARDS

CASESTUDY

DUCTMATE

Beneath the lights, glamour, and redcarpets of the City of Angels, the LA metro connects 9.6 million people over a 1,433-square-mile service area. In 2014, the City began a huge construction project to extend the existing Metro E Line at Crenshaw and Exposition Boulevards and merge it with the Metro C (Green) Line at the Aviation/LAX Station on Aviation Boulevard and beyond.

The extension would dramatically reduce travel times, lower transportation costs, and improve the quality of life for commuters and residents as well as benefiting the surrounding environment.

Engineering such a monumental and technically complex project, one that would deliver a vast number of socioeconomic solutions, was a challenge as monumental as the biggest movie star's ego.

It was the underground stations where Metro had its most challenging objective. The army of construction workers would need to tunnel under thousands of buildings and congested streets, all in a seismically active area.

The HVAC Contracting Companies of Limbach and Superior Duct were tasked with sourcing and installing the critical air systems needed. With ductwork exceeding 45 square feet in 20 ' sections, the contractors had to be extremely selective in the connection system they would use.

Because of the unique below ground operation, the HVAC system had to withstand very rigorous operating standards, as well as meet the engineering standards for catastrophic events such as an earthquake. The ductwork would have to tolerate up to 14 " positive and negative pressure and operating temperatures exceeding 480 degrees.

Fortunately Ductmate 45 Industrial Rectangular Duct Connector System, along with the engineering and technical support of Ductmate Industries, was up to the task.

The Ductmate 35 and Ductmate 45 Rectangular Duct Connector Systems, at an incredible cost saving compared to competitive angle flanges, are designed and engineered to increase the overall performance (airtight and structural integrity) of commercial and industrial HVAC systems. They are the most independently tested and widely used connector systems in the world.

Ductmate Industries' engineering department built industrial sections of duct using the DM 45 connector system and tested it well beyond the performance requirements of the LA Metro project to confirm and support testing

WHAT MAKES DUCTMATE FLANGE A SUPERSTAR

One of the most highly tested and specified duct connection systems in the world.

Fabricating connections for

 HVAC systems using companion angle is a very labour intensive installation process.Companion angle is hard to cut, requires countless number of holes to be drilled, must be painted to prevent rust, and requires certified welders to join angle together and to attach to the duct wall, and then attached with equally countless number of nuts and bolts.

Ductmate flange is a self-sealing slide-on connector system where no welding is needed to achieve an airtight seal. Its 4 -bolt design with optional bolt-on or snapon cleat (which replaces all the nuts and bolts) makes ease of installation and airtight integrity simple. It is the clear choice over labour-intensive companion angle or other alternatives.

For over 40 years, Ductmate has been partnering with companies in the commercial and industrial HVAC space to solve challenging and unique mechanical problems in every conceivable alloy.

The Ductmate 25/35/45 self sealing rectangular duct connector systems are used to connect rectangular ducts when a rigid, leak-free connection is required.

It is a strong and virtually leakfree rectangular duct connection system consisting of roll-formed flanges, corner pieces, gasket, and cleat.

The flanges attach to the duct wall and have an integral mastic which allows the flange to seal itself to the duct.

Corner pieces are used to add rigidity to the flange, hold the ductwork together, and provide a sealing surface for the gasket. The gasket serves as a seal between the flanges.

The cleat then insures an even compression of the gasket along the length of the flange.

Nothing else in the market comes close to the ease of installation and outstanding performance of the system

SPECIAL CHARACTERISTICS

- Simple to install
- No additional sealing required
- Available in specialty metals
- Innovative downset corner insures a proper seal (excludes Ductmate '45')
- Patented corner clips ease installation (excludes Ductmate '45')
- Sealing materials meet NFPA 90A \& B Class 1 requirements
- Not recommended for applications with duct gauges heavier than 10 GA or lighter than 22 GA , applications with duct gauges heavier than 16 GA or lighter than 26 GA, or applications with duct gauges heavier than 20 GA or lighter than 26 GA
- Virtually no leakage at up to 10 " WG positive pressure or down to 10" WG negative pressure. Consult DCL Supply for static pressures exceeding these specifications

Ductmate 25,35 , and 45 Flange offer superior performance over industry standard TDC and TDF connections. Not only is it easier to install, with a more solid airtight connection achieved in fewer steps, it also offers labour and cost savings, acts as a reinforcement, and is much more versatile in the field.

TDF / TDF

- TDC \& TDF are machine-rolled, fabricated, and roll-formed from the ductwork itself.
- They have the same gauge as ductwork and so are not considered a stiffener.
- Require more inner supports or tie rods.
- Require additional nuts/bolts and gasket.
- An additional sealant may be required to make a tight seal.

DUคTMATE FLAMGE SYSTEM

- Roll-formed frame system connection.
- NO additional sealants needed.
- NO bolt corner system - DM35.
- Downset corners for an airtight seal.
- Considered and rated as a duct stiffener.
- Allowance to drop in gauges of ductwork.
- Minimal ties required
- 5511M mastic pre-injected into the frame for an airtight connection.
- Increase labour due to added sealers and nuts/bolts.
- More inner tie rods needed for stiffeners.
- The flange is same gauge as ductwork, so it is less structural.
- More chance of added leakage in corners.
- Cannot do field cuts.

- Increased labour due to extra sealant required.
- Nuts/Bolts are mandatory and labour intensive. - More inner tie rod supports mean increased labour in manufacturing.

- NO bolt system makes it faster to install
- No extra sealant required
- The connection is considered a stiffener making it less labour intensive to install multiple pieces

There is a good reason why Ductmate 25 / 35 / 45 Flange is one of the most specified flange systems in the world.

HOW THEY COMPARE: Ductmate 25 / 35 / 45

Having the right tools to choose the right DM Flange system is one of the many advantages of the system (See Appendix A for comprehensive construction standards). All systems meet SMACNA construction standards

Characteristic	Ductmate 25	Ductmate 35	Ductmate 45
Simple to install	\checkmark	\checkmark	\checkmark
No additional sealing required	\checkmark	\checkmark	\checkmark
Available in specialty metals	\checkmark	\checkmark	\checkmark
Innovative downset corner insures a proper seal	\checkmark	\checkmark	X
Patented corner clips ease installation	\checkmark	\checkmark	X
Sealing materials meet NFPA 90A \& B Class 1 requirements	\checkmark	\checkmark	\checkmark
Duct gauges heavier than 20 GA or lighter than 26 GA	X	\checkmark	\checkmark
Duct gauges heavier than 16 GA or lighter than 26 GA	\checkmark	x	\checkmark
Duct gauges heavier than 10 GA or lighter than 22 GA	\checkmark	\checkmark	X
Virtually no leakage at up to 10 " WG positive pressure or down to 10" WG negative pressure.	\checkmark	\checkmark	\checkmark

Call DCL Supply for static pressures exceeding or below positive or negative 10" WG

INSTALLING DUCTMATE FLANGE

The Ductmate Flange 25/35/45 system consists of four different components:

ω

Metal or PVC cleats

2
Precision stamped corner pieces

6 STEPS TO INSTALL DUCTMATE FLANGE

Cut the Flange to size.
Always cut Ductmate angle $11 / 4$ " $-13 /{ }^{\prime \prime}$ " shorter than the duct dimension. For DM45, cut $1 \frac{1}{2}$ " $-15 / \mathbf{s}^{\prime \prime}$ shorter.
Slam the blade through the Angle as quickly as possible. Saw must have sufficient horsepower. Always use a metal friction saw blade. A band saw or hack saw can also be used.
IMPORTANT: Do not notch the corners when fabricating ductwork for the Ductmate System.

Assemble the Frame

Once the flange is cut, the frame can be assembled.
2.1: Make sure the ductmate model number on the corner piece faces the leg of the flange.
2.2: Insert corner pieces into the ends of the two shortest flange sections.

PRO-TIPS

Never cut the flange with the legs facing up as chips may fall in to the mastic.

Never use an abrasive blade as the heat can melt the mastic.

Starting at the corner, use a mallet to tap the flange on to the duct. Work in one direction right around the duct to seating the frame.
REMEMBER: There is no need to notch the corners when attaching the Ductmate System.

Establish metal to metal contact around the full perimeter of the frame. Because of the exclusive patented downset feature the duct will protrude beyond the Ductmate corner piece

VERY IMPORTANT: If the duct corner or the Pittsburgh lock gets caught under the Ductmate corner, tap the frame outwards to allow the duct corner to slide past the Ductmate corner piece.

It is critical that the duct wall must be seated all the way in to the integral mastic pocket of the Ductmate Flange.

IMPORTANT: SelfDrilling screws or spot welds must be used.

Begin fastening in one corner, attach at each corner, 3/4" from the end of the flange, working in one direction around the perimeter.

Additional screws must be placed 2-3" from the end of the flange

Before applying the gasket ensure the frame is free from oil or debris.

IMPORTANT: Do not stretch the gasket when applying. Press on firmly after applying.

PRO-TIP

If you are working in colder temperatures ensure the gasket is kept warm in a hot box or similar for proper performance.

IMPORTANT: Corner clips are secure for most applications but for heavier gauges (or space limitations) bolts can also be used at each corner. Do not over tighten or under tighten the bolts.

IMPORTANT: Use a 6" cleat, 24" on centre. For outdoor ductwork use a full length cleat on the top of the flange frame to prevent water getting on the gasket.

PRO-TIPS

Ductmate 25/35 cleat can be snapped-on with the Cleater I Tool or with the Cleater II where space is restricted. Ductmate '45' requires the Versa Cleater Tool for installation of the larger Ductmate 45 Snap-On cleat (all specialty tools are available from DCL Supply). Work toward center of the duct using the schedule available on the next page's specs.

If a corner cannot be clipped or bolted due to inaccessibility, the cleat can be driven onto the mating flanges to complete the connection.

KEY SPECS FOR ENGINEERS AND INSTALLERS.

The Ductmate Systems consist of the following components:

a. Ductmate ' 45 ' flange is roll-formed from 18 GA galvanized steel, with an integral sealant.
b. Ductmate ' 35 ' flange is roll-formed from 20 GA galvanized steel, with an integral sealant.
c. Ductmate ' 25 ' flange is roll-formed from 24 GA galvanized steel, with an integral sealant.

d. Ductmate ' 45 ' electroplated, bolt corner pieces insert into the hollow
web of the ' 45 ' angle.
e. Ductmate DCIIIA, DCIIIB or DC35 corner pieces insert into the hollow web of the ' 35 ' Angle.
f. Ductmate DC25 clip or DC25 bolt corner pieces insert into the hollow web of the ' 25 ' Angle.
g. Ductmate '45' metal cleat is roll-formed from 22 GA galvanized steel.
h. Metal cleat is roll-formed from 20 GA galvanized steel.
(PVC Cleat is available upon request).
i. 440 Butyl Gasket is extruded butyl for use between mating flanges.
(Neoprene gasket is available upon request).
j. Corner clips are 16 GA galvanized steel.
(Use of nuts and bolts optional: $3 / 8$ " $\times 1$ " for DCIIIB, $5 / 8$ " $\times 1$ " for Ductmate DC25 corners).

CLEAT INSTALLATION

With DM440 Gasket
For all low, medium and high pressure applications, use $6^{\prime \prime}$ cleat, 24" O.C. (On Centre)

With Neoprene Gasket
For 1/2"-2" WG/SP use 6" cleat, 24" O.C.
For $3^{\prime \prime}-4^{\prime \prime}$ WG//SP use 6"
cleat, 18" O.C.
For 6"-10" WG/SP use 6" cleat, 12" O.C.

PVC CLEAT:
Polyvinyl chloride (PVC) is an organic polymer derived from petroleum and salt. Performance Properties:
Relative high ignition resistance: flash ignition: $391^{\circ} / 735^{\circ} \mathrm{F}$
Self ignition: $454^{\circ} \mathrm{C} / 850^{\circ} \mathrm{F}$
Low fuel contribution
Lack of flaming drips
High external heat necessary to maintain combustion
UL94-Passes
UL723 (ASTM E-84) Test Data: Flame Spread:10| Fuel Contribution: 0 | Smoke Density: 10 |Service Temp: $+32^{\circ} \mathrm{F}$ to $+150^{\circ} \mathrm{F}$

PVC Cleat is used around perimeter of transverse joint. Not recommended for roof top applications.

METAL CLEAT:
DM Metal Cleat is roll-formed of 20 GA galvanized steel for application around perimeter of transverse joint.

DUGTMATE '25' GOMPONENTS

Bolted DC25 Corner Piece

DUGTMATE '35' GOMPONENTS

DCIIIB Corner Piece

DUGTMATE '45' GOMPONENTS

ADDITIONAL COMPONENTS

Ductmate '45' was tested in accordance with SMACNA testing procedures. No external sealant was employed and the test results reveal: the Ductmate '45' system is comparable to a SMACNA Class K transverse joint.

Ductmate ' 35 ' system is comparable to the SMACNA Class " J " transverse joint and the Ductmate ' 25 ' system is comparable to the SMACNA Class " F " joint. Ductmate ' 35 ' in stainless steel exhibits the same performance as galvanized. Aluminum DM35 is comparable to a SMACNA H connection.

DM25 is not available in aluminum or stainless. DC35 corner pieces must be used with aluminum. Aluminized or PVC cleats are used with aluminum flanges. Cleat is not available in aluminum.

Do not notch the corners when fabricating ductwork for the Ductmate System

PRODUCTS RELATED TO THE DUCTMATE FLANGE SYSTEM

All Ductmate products are exclusively provided in Canada by

 DCL Supply Ltd. .
DM 440 ${ }^{\text {TM }}$ Gasket Tape

High quality sealing tape for use with Ductmate's 4-bolt connection systems. Also suitable for use with other rectangular flange systems which require gasket.
Ductmate 440 tape has the widest range of application temperatures of any material on the market, ensuring a positive seal and ease of application under extreme conditions.

Neoprene Gasket Tape

Excellent for use between duct flanges to produce an airtight seal.

Neoprene Gasket Tape is a synthetic, closed-cell, rubber-based sealing tape. Pressure sensitive adhesive backing, synthetic closed cell tape and simple and easy to install

Versa-Cleat

Snap-on cleat that can be used in conjunction with a variety of TDC connections along with Ductmate 35 and Ductmate 45 systems.

The unique design of this cleat allows it to be used on most rectangular flange connections

Bolt-On Cleat

Universal flange clamp designed to be a quick and easy alternative to complete a rectangular duct connection when compared to traditional cleats. Can be used with multiple flange profiles: DM $25,35,45 ®$, WDCI J and H , T.D.C® / T.D.F®, stamped from 11 GA Galvanized Steel Easy to install with no special tools required
Neat, professional appearance

Ductmate Alignment Tool

Reduce on site installation time for rectangular duct. This tool uses the holes in the Ductmate corners to quickly align and compress mating ductwork allowing for fast and easy installation of Ductmate's patented corner clips.

Cleater ${ }^{\circledR} 1$ \& Cleater ${ }^{\circledR} 2$

The Cleater 1 \& Cleater 2 are used to attach cleat to Ductmate Flange joints.
The Cleater 1 is the ideal tool for attaching cleat to Ductmate Flange joints where spacing is not an issue. Use the Cleater 2 in conjunction with $5 / 8^{\prime \prime}$ deep-wall socket, extensions, and wrench (not included) to attach cleat in hard-to-reach places.

Universal Press-On Bullnosing

Ductmate Press-On Bull Nosing is universal and can be used on DM Flange and T.D.C / T.D.F systems a fast and effective means to reduce fibers within the air stream.
Double-sided adhesive gasket for fast application, helps protect insulation from damage, available for multiple insulation thicknesses with a consistent product quality

ABOUT DCL SUPPLY LTD.

All Ductmate products are exclusively provided in Canada by DCL Supply Ltd. Call 1-800-263-4541 (press 3 for the order desk) or visit www.dclsupply.ca/products for all product information, Spec Sheets, Safety Data Sheets and full item lists. .

FOR DETAILS AND A FULL LIST OF HUNDREDS MORE PRODUCTS VISIT: www,dclsupply.ca/products

AND MORE...

DCL Supply is commmited to providing the gold standard in customer service. Ask us about our Freight Allowance Program, our Volume Rebate Program, help with specs, custom sheet metal, and much more. Call us today and experience the difference.
Phone: 905-332-7678 Fax: 905-332-1731 Email: orders@dclsupply.ca

Toll-Free: 1-800-263-4541 (Press 3 for Order Desk) Web: www.dclsupply.ca

SOURCES

CASE STUDY
https://www.metro.net/projects/crenshaw_corridor/
https://www.youtube.com/watch?v=BgDqv1QWQng

DUCTMATE FLANGE INSTALLATION VIDEO

https://youtu.be/dCNRI3rm4sA
FOR MORE INFORMATION ON ANY PRODUCT, INCLUDING ALL THE DUCTMATE FLANGE SYSTEMS AND RELATED PRODUCTS VISIT:
www.dclsupply.ca/products FOR MORE INFORMATION, SPEC SHEETS, SDS SHEETS, AND FULL ITEM LISTS.

OR CALL 1-800-263-4541 (PRESS 3 FOR THE ORDER DESK) AND OUR FRIENDLY, EXPERT , AND PROFESSIONAL TEAM WILL BE HAPPY TO ANSWER ANY OF YOUR QUESTIONS OR TAKE YOUR ORDER.

APPENDIX A:

Ductmate

Construction Standards

FORWARD

The widespread use of the "Ductmate® 25, 35, and 45 Slide-On Systems" makes these duct construction guidelines a necessity.

This manual is based on fundamental, sound engineering principles. The criteria used to establish the tables in this publication are $1 / 4$ " joint and $3 / 4$ " sheet deflection limits for ducts over 24 " wide.

These duct construction standards are based on independent testing using the Ductmate Systems exclusively as manufactured by Ductmate Industries Incorporated U.S.A. No other flange system can be used in conjunction with these tables.

Any reference to SMACNA in this manual refers to the SMACNA 2005 "HVAC Duct Construction Standards, Metal and Flexible," Third Edition.

TABLES

When using the Rectangular Duct Construction Tables in this manual, Reinforcement Spacing refers to both the Ductmate joints and Intermediate Reinforcements (Center Tie Rods or External Stiffeners.)

Ductmate's Rectangular Duct Construction Tables are based on 6', 5', and 4' duct section lengths. Columns 6', 5', and 4' are construction guidelines without the use of any joint or intermediate reinforcements.

The $3^{\prime}, 21 / 2^{\prime}$, and 2^{\prime} columns are used in conjunction with the $6^{\prime}, 5^{\prime}$, and 4^{\prime} duct section lengths. These columns provide alternative construction guidelines such as lighter metal gauges, joint tie rods, center tie rods, or external intermediate reinforcements.

When making special fittings, if the duct length matches the $3^{\prime}, 2 \frac{1}{2}{ }^{\prime}$, and 2^{\prime} column spacing, you do not need the CTR or external reinforcement between the joints.

See examples on pages 6-7.

Positive Pressure

This addendum includes positive pressure guidelines for pressure classes up to 10 " w.g.

Negative Pressure

Duct construction tables for $1 / 2^{\prime \prime}, 1^{\prime \prime}, 2^{\prime \prime}$, and 3 " w.g. can be used for both positive and negative pressures. For negative pressures greater then 3" w.g., please contact Ductmate Industries or refer to the SMACNA Rectangular Industrial Duct Construction Standards. Except for aluminum, the guidelines on pages 8-15 can be used on galvanized, galvannealed, 304 and 316 stainless steel, PVC coated, aluminized, and black iron.

Duct construction guidelines for aluminum applications are on pages 17-22.
Metric duct construction guidelines for aluminum can be found on pages 38-43.
In a cell, DM25 refers to the Ductmate 25 Connector system, DM35 refers to the Ductmate 35 system, and DM45 refers to the Ductmate 45 system.

When an intermediate reinforcement is required in a cell, there will be an internal tie rod or an external alphabetical option, or both.

CTR (Center Tie Rod) refers to an internal tie rod halfway between the Ductmate joints.
JTR (Joint Tie Rod) refers to an internal tie rod at the Ductmate joints.
See page 5 for CTR and JTR details.
When using conduit as a tie rod for rods up to 36 " long use $1 / 2^{\prime \prime}$ conduit. For rods 37 " and longer use $3 / 4$ " conduit.

The maximum distance from the duct wall to a tie rod is 48 " on center.
When more than one tie rod is required on the same plane at a joint or reinforcement, the maximum distance between tie rods is $48^{\prime \prime}$ on center.

When a CTR and / or JTR is needed on both the width and height dimension of the duct, where the rods intersect, they must be clamped, tied or welded together to prevent vibrating against each other.

If an (*) appears next to the DM25, DM35, DM45, or intermediate reinforcement it indicates that a tie rod is needed.

If an alphabetical letter A through K appears in a cell, it refers to an external intermediate reinforcement option between the Ductmate joints. See the SMACNA profile alternatives for each rigidity class on page 4 . Note: At 4 " w.g. and up, ends of reinforcements must be tied together per SMACNA (See Figures 2-11 and 2-12 of the SMACNA HVAC Duct Construction Standards, Third Edition - 2005 (positive and negative pressures).

Table 2-29							
INTERMEDIATE REINFORCEMENT							
				CHANNEL OR ZEE		hat section	
	El*	H x T (MIN)	$\frac{\mathrm{WT}}{\mathrm{LF}}$	H x B x T (MIN)	$\frac{\text { WT }}{\text { LF }}$	HxBxDxT (MIN)	$\frac{\mathrm{WT}}{\mathrm{LF}}$
A	0.43	Use C		Use B		Use F	
B	1.0	Use C		$3 / 4 \times 1 / 2 \times 20 \mathrm{ga}$	0.24	Use F	
C	1.9	$\begin{aligned} & \text { C } 1 \times 16 \mathrm{ga} \\ & \text { C } 3 / 4 \times 1 / 8 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.57 \end{aligned}$	$\begin{aligned} & 3 / 4 \times 1 / 2 \times 18 \mathrm{ga} \\ & 1 \times 3 / 4 \times 20 \mathrm{ga} \end{aligned}$	0.31	Use F	
D	2.7	$\begin{aligned} & \mathrm{H}^{3 / 4} \times 1 / 8 \\ & \mathrm{C} 1 \times 1 / 8 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.80 \end{aligned}$	$1 \mathrm{x} 3 / 4 \times 18 \mathrm{ga}$	0.45	Use F	
E	6.5	$\begin{aligned} & \text { C } 1 \frac{1}{4} \times 12 \text { ga } \\ & \text { H } 1 \times 1 / 8 \end{aligned}$	0.90	$2 \times 11 / 8 \times 20 \mathrm{ga}$	0.60	Use F	
F	12.8	H $11 / 4 \times 1 / 8$	1.02	$11 / 2 \times 3 / 4 \times 18 \mathrm{ga}$	0.54	$\begin{aligned} & 11 / 2 \times 3 / 4 \times 5 / 8 \times 18 \mathrm{ga} \\ & 11 / 2 \times 11 / 2 \times 3 / 4 \times 20 \mathrm{ga} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.83 \end{aligned}$
G	15.8	$11 / 2 \times 1 / 8$	1.23	$11 / 2 \times 3 / 4 \times 16 \mathrm{ga}$	0.66	$11 / 2 \times 3 / 4{ }^{5} / 8 \times 18 \mathrm{ga}$	0.80
H	26.4	$\begin{aligned} & 11 / 2 \times 3 / 16 \\ & 2 \times 1 / 8 \end{aligned}$	$\begin{aligned} & 1.78 \\ & 1.65 \end{aligned}$	$11 / 2 \times 3 / 4 \times 1 / 8$	1.31	$\begin{aligned} & 11 / 2 \times 1 \frac{1}{2} \times 3 / 4 \times 18 \mathrm{ga} \\ & 2 \times 1 \times 3 / 4 \times 20 \mathrm{ga} \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.90 \end{aligned}$
I	69	$\begin{aligned} & \text { C } 2 \times 3 / 16 \\ & 21 / 2 \times 1 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.44 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 2 \times 11 / 8 \times 12 \mathrm{ga} \\ & 3 \times 1 \frac{1}{8} \times 16 \mathrm{ga} \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.05 \end{aligned}$	$2 \times 1 \times 3 / 4 \times 16 \mathrm{ga}$	1.44
J	80	$\begin{aligned} & \text { H } 2 \times 3 / 16 \\ & \text { C } 2 \times 1 / 4 \\ & 21 / 2 \times 1 / 8(+) \end{aligned}$	$\begin{aligned} & 2.44 \\ & 3.20 \\ & 2.10 \end{aligned}$	$2 \times 11 / 8 \times 1 / 8$	1.85	$\begin{aligned} & 2 \times 1 \times 3 / 4 \times 12 \mathrm{ga} \\ & 21 / 2 \times 2 x^{3 / 4} \times 18 \mathrm{ga} \end{aligned}$	$\begin{aligned} & 2.45 \\ & 1.53 \end{aligned}$
K	103	$2^{1 / 2} \times 3 / 16$	3.10	$3 \times 11 / 8 \times 12 \mathrm{ga}$	2.00	$\begin{aligned} & 21 / 2 \times 2 \times 3 / 4 \times 16 \mathrm{ga} \\ & 3 \times 1 \frac{11 / 2}{} \times 3 / 4 \times 16 \mathrm{ga} \end{aligned}$	$\begin{aligned} & 1.88 \\ & 2.00 \end{aligned}$
L	207	$\mathrm{H} 2^{1 / 2} \times 1 / 4$	4.10	$3 \times 11 / 8 \times 1 / 8$	2.29	$\begin{aligned} & 21 / 2 \times 2 \times 3 / 4 \times 1 / 8 \\ & 3 \times 11 / 2 \times 3 / 4 \times 12 \mathrm{ga} \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.40 \end{aligned}$

See Section 2.1.4 *Effective El is number listed times 10^{5} before adjustment for bending moment capacity. C and H denote cold formed and hot rolled ratings; when neither is listed, either may be used. See tie rod options elsewhere.

NOTES: a. (+) indicates positive pressure use only.
b. Hat Section Dimension "B" may be equal to 2 times Dimension "H" with the same reinforcement class rating.

EZ-ROD / TIE ROD CONSTRUCTION USE FOR SHOP FABRICATED OR KNOCKED DOWN DUCTWORK

DETAIL A
DETAIL B

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.
No construction defined. See other options.

$\begin{gathered} \text { 1" W.G. } \\ \text { STATIC } \\ \text { POS./NEG. } \end{gathered}$	Table 2					
	REINFORCEMENT SPACING					
	6	5	4	3 '	2.5	$2 '$
Duct Size						
8" dn	26 ga-DM25					
9, 10"	26 ga-DM25					
11, 12"	26 ga-DM25					
13, 14"	26 ga-DM25					
15, 16"	26 ga-DM25					
17, 18"	26 ga-DM25					
19, 20"	26 ga-DM25					
21, 22"	26 ga-DM25					
23, 24"	26 ga-DM25					
25, 26"	26 ga-DM25					
27, 28 "	26 ga-DM25					
29, 30"	26 ga-DM25					
31-36"	24 ga-DM25 26 ga-DM25	26 ga-DM25				
37-42"	22 ga-DM25	24 ga-DM25	26 ga-DM25	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "E" } \end{aligned}$		
43-48"	22 ga-DM25	24 ga-DM25	26 ga-DM25	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "E" } \\ & \hline \end{aligned}$		
49-54"	20 ga-DM25 22 ga-DM35	22 ga-DM25 24 ga-DM35	24 ga-DM25	26 ga-DM25 CTR or "F"		
55-60"	20 ga-DM25 22 ga-DM35	$\begin{aligned} & 22 \text { ga-DM25 } \\ & 24 \text { ga-DM35 } \\ & \hline \end{aligned}$	24 ga-DM25	26 ga-DM25 CTR or "G"		
61-72"	22 ga-DM35	24 ga-DM35	-	$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { CTR or "H" } \\ & \hline \end{aligned}$	26 ga-DM35 CTR or "H"	
73-84"	18 ga-DM35	$20 \mathrm{ga-DM} 35$		$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { CTR or "H" } \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM35 } \\ & \text { CTR or "H" } \end{aligned}$	
85-96"	16 ga-DM35*	18 ga-DM35*		$\begin{aligned} & 22 \text { ga-DM35* } \\ & \text { CTR or " }{ }^{*} \text { " } \end{aligned}$	24 ga-DM35* CTR or "H*"	$\begin{aligned} & 26 \text { ga-DM35* } \\ & \text { CTR or "J" } \end{aligned}$
97" up				$\begin{aligned} & 20 \text { ga-DM35* } \\ & \text { CTR or " }{ }^{*} \text { " } \end{aligned}$	$\begin{aligned} & 22 \text { ga-DM35* } \\ & \text { CTR or "H*" } \end{aligned}$	

$\begin{gathered} \text { 2" W.G. } \\ \text { STATIC } \\ \text { POS./NEG. } \end{gathered}$	Table 3					
	REINFORCEMENT SPACING					
	6 '	5 '	4	3 '	2.5	$2 '$
Duct Size						
$8{ }^{\prime \prime} \mathrm{dn}$	26 ga-DM25					
9, 10"	26 ga-DM25					
11, 12"	26 ga-DM25					
13, 14"	26 ga-DM25					
15, 16"	26 ga-DM25					
17, 18"	26 ga-DM25					
19, 20"	24 ga-DM25	26 ga-DM25				
21, 22"	24 ga-DM25	26 ga-DM25				
23, 24"	24 ga-DM25	26 ga-DM25				
25, 26 "	24 ga-DM25	26 ga-DM25				
27, 28"	22 ga-DM25	24 ga-DM25	26 ga-DM25	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \\ & \hline \end{aligned}$		
29, 30"	22 ga-DM25	24 ga-DM25	26 ga-DM25	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$	-	
31-36"	22 ga-DM25	24 ga-DM25	-	$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$	$\begin{array}{\|l\|} \hline 26 \text { ga-DM25 } \\ \text { CTR or "C" } \\ \hline \end{array}$	
37-42"	$\begin{aligned} & \hline 20 \text { ga-DM25 } \\ & 22 \text { ga-DM35 } \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \text { ga-DM25 } \\ & 24 \text { ga-DM35 } \\ & \hline \end{aligned}$	24 ga-DM25	$24 \text { ga-DM25 }$ CTR or "D"	$26 \text { ga-DM25 }$ CTR or "D"	
43-48"	$\begin{array}{\|l\|} \hline 20 \text { ga-DM25 } \\ 22 \text { ga-DM35 } \\ \hline \end{array}$	$\begin{aligned} & 20 \text { ga-DM25 } \\ & 24 \text { ga-DM35 } \\ & \hline \end{aligned}$	-	$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { CTR or "E" } \end{aligned}$	26 ga-DM25 CTR or "E"	
49-54"	22 ga-DM35	22 ga-DM35	$\begin{array}{\|l\|} \hline 20 \text { ga-DM25 } \\ 22 \text { ga-DM35 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \text { ga-DM35 } \\ \text { CTR or "F" } \\ \hline \end{array}$	26 ga-DM35 CTR or "F"	\square
55-60"	22 ga-DM35	22 ga-DM35	\square	$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { CTR or "G" } \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM35 } \\ & \text { CTR or "G" } \end{aligned}$	\square
61-72"	16 ga-DM35	-	18 ga-DM35	22 ga-DM35 CTR or "l"	24 ga-DM35 CTR or "H"	26 ga-DM35 CTR or "H"
73-84"				$\begin{aligned} & 20 \text { ga-DM35** } \\ & \text { CTR or "H*" } \end{aligned}$	$\begin{aligned} & 22 \text { ga-DM35* } \\ & \text { CTR or " }{ }^{* * " ~} \end{aligned}$	24 ga-DM35* CTR or "H*"
85-96"				$\begin{aligned} & 20 \text { ga-DM35* } \\ & \text { CTR or " }{ }^{* * " ~} \end{aligned}$	$\begin{array}{\|l} \hline 22 \text { ga-DM35* } \\ \text { CTR or "H*" } \\ \hline \end{array}$	
97" up				20 ga-DM35* CTR or "H*"	$\begin{aligned} & 22 \text { ga-DM35* } \\ & \text { CTR or "H*" } \end{aligned}$	\square

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.
No construction defined. See other options.

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

4" W.G. STATIC POS.	Table 5					

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.

No construction defined.
See other options.

6" W.G. STATIC POS.	Table 6					
	REINFORCEMENT SPACING					
	6 '	5 '	4'	$3 '$	2.5	$2 '$
Duct Size						
$8 " \mathrm{dn}$	24 ga-DM25			$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \\ & \hline \end{aligned}$		
9, 10"	24 ga-DM25			$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$		
11, 12"	24 ga-DM25			$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$		
13, 14"	24 ga-DM25			$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$		
15, 16"	24 ga-DM25			$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$		
17, 18"	20 ga-DM25	22 ga-DM25		$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$	26 ga-DM25 CTR or "C"	-
19, 20 "	20 ga-DM25	22 ga-DM25		$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { CTR or "C" } \end{aligned}$	26 ga-DM25 CTR or "C"	-
21, 22"	20 ga-DM25	22 ga-DM25		$24 \text { ga-DM25 }$ CTR or "C"	26 ga-DM25 CTR or "C"	\bigcirc
23, 24 "	20 ga-DM25	22 ga-DM25		$24 \text { ga-DM25 }$ CTR or "D"	26 ga-DM25 CTR or "D"	-
25, 26 "	20 ga-DM25	22 ga-DM25		$24 \text { ga-DM25 }$ CTR or "D"	26 ga-DM25 CTR or "D"	-
27, 28"	20 ga-DM25	22 ga-DM25		$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { CTR or "D" } \end{aligned}$	26 ga-DM25 CTR or "D"	-
29, 30"	20 ga-DM25	22 ga-DM25		$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { CTR or "D" } \\ & \hline \end{aligned}$	26 ga-DM25 CTR or "D"	
31-36"		20 ga-DM25		$22 \text { ga-DM25 }$ CTR or "E"	24 ga-DM25 CTR or "E"	26 ga-DM25 CTR or "E"
37-42"				$\begin{aligned} & 22 \text { ga-DM35 } \\ & \text { CTR or "F" } \end{aligned}$	24 ga-DM35 CTR or "F"	26 ga-DM35 CTR or "F"
43-48"				$\begin{aligned} & 22 \text { ga-DM35 } \\ & \text { CTR or "G" } \end{aligned}$	$\begin{gathered} 24 \text { ga-DM35 } \\ \text { CTR or "G" } \end{gathered}$	$\begin{gathered} 26 \text { ga-DM35 } \\ \text { CTR or "G" } \\ \hline \end{gathered}$
49-54"				$\begin{aligned} & 20 \text { ga-DM35 } \\ & \text { CTR or "H" } \end{aligned}$	$22 \text { ga-DM35 }$ CTR or "H"	$24 \text { ga-DM35 }$ CTR or "H"
55-60"				$\begin{aligned} & 20 \text { ga-DM35 } \\ & \text { CTR or "H" } \end{aligned}$	$22 \text { ga-DM35 }$ CTR or "H"	24 ga-DM35 CTR or "H"
61-72"				$\begin{aligned} & 18 \text { ga-DM35 } \\ & \text { CTR or "H" } \end{aligned}$	20 ga-DM35 CTR or "H"	-
73-84"				$\begin{aligned} & 18 \text { ga-DM35** } \\ & \text { CTR or "H*" } \end{aligned}$	$\begin{aligned} & 20 \text { ga-DM35** } \\ & \text { CTR or " }{ }^{*} \text { " } \end{aligned}$	
85-96"				$\begin{aligned} & 18 \text { ga-DM35* } \\ & \text { CTR or " }{ }^{*} \text { " } \end{aligned}$	20 ga-DM35* CTR or "H*"	
97" up				$\begin{aligned} & 18 \text { ga-DM35** } \\ & \text { CTR or " }{ }^{*} \text { " } \end{aligned}$	$20 \text { ga-DM35* }$ $\text { CTR or " } \mathrm{H} \text { " }$	

Columns denote maximum unreinforced spacing.
No construction defined.
Indicates is the same as last defined cell.
See other options.

10" W.G STATIC POS.	Table 7					
	REINFORCEMENT SPACING					
	6 '	5'	4	3 '	2.5	$2 '$
Duct Size						
$8{ }^{\prime \prime} \mathrm{dn}$	20 ga-DM25			$24 \text { ga-DM25 }$	"C", ga-DM25	\bigcirc
9, 10"	20 ga-DM25			$\begin{aligned} & 24 \mathrm{ga-DM} 25 \\ & \text { "C" } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26 \text { ga-DM25 } \\ & \text { "C" } \\ & \hline \end{aligned}$	\square
11, 12"	20 ga-DM25			$\begin{aligned} & 24 \mathrm{ga-DM} 25 \\ & \text { "D" } \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { "D" } \\ & \hline \end{aligned}$	\square
13, 14"	20 ga-DM25			$\begin{aligned} & 24 \mathrm{ga-DM} 25 \\ & \text { "D" } \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \hline \text { D" } \\ & \hline \end{aligned}$	-
15, 16"	20 ga-DM25			$\begin{aligned} & 24 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	"D" ga-DM25	-
17, 18"	20 ga-DM25			$\begin{aligned} & 24 \mathrm{ga-DM} 25 \\ & \text { "D" } \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	
19, 20"	18 ga-DM25	20 ga-DM25		$\begin{aligned} & 24 \text { ga-DM25 } \\ & \hline \text { " } \end{aligned}$	$\begin{aligned} & 26 \text { ga-DM25 } \\ & \text { "E" } \end{aligned}$	\square
21, 22"	18 ga-DM25	20 ga-DM25		$\begin{aligned} & 24 \mathrm{ga} \text { "DM25 } \\ & \hline \text { " } \end{aligned}$	$26 \text { ga-DM25 }$	-
23, 24 "	18 ga-DM25	20 ga-DM25		24 ga-DM25	$\begin{aligned} & \text { "E" ga-DM25 } \end{aligned}$	
25, 26 "	18 ga-DM25	20 ga-DM25		$\begin{aligned} & 24 \mathrm{ga} \text { "DM25 } \\ & \text { " } \end{aligned}$	$\begin{aligned} & \text { "E" } \\ & \text { ga-DM25 } \end{aligned}$	\square
27, 28"	18 ga-DM25	20 ga-DM25		$24 \text { ga-DM25 }$	$\begin{aligned} & \text { "E" } \\ & \text { ga-DM25 } \end{aligned}$	-
29, 30"	18 ga-DM25	20 ga-DM25		$24 \text { g" ga-DM25 }$	$\begin{aligned} & 26 \text { " ga-DM25 } \\ & \hline \end{aligned}$	
31-36"				${ }^{22} \mathrm{E} \text { "ga-DM35 }$	$24 \text { ga-DM35 }$	"E" ga-DM35
37-42"				"F" ga-DM35	$\underset{\text { "F' }^{22} \text { ga-DM35 }}{ }$	$24 \text { ga-DM35 }$
43-48"				$\begin{aligned} & \text { " } 20 \text { ga-DM35 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { " } 22 \text { ga-DM35 } \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { "G" } \\ & \hline \end{aligned}$
49-54"				$\begin{aligned} & 20 \mathrm{ga} \text { "DM35 } \\ & \text { " } \end{aligned}$	"H" ga-DM35	$\begin{aligned} & 24 \text { ga-DM35 } \\ & \text { "H" } \end{aligned}$
55-60"				$\text { " } 20 \text { ga- }{ }^{\star 1}$	$\text { " } 22 \text { gan }{ }^{\star 1}$	\square
61-72"				$\begin{aligned} & \text { " } \mathrm{H}^{* 1} \text { ga-DM35* } \end{aligned}$	$\text { " } 20 \text { gan }{ }^{\star n}$	-
73-84"				$\begin{aligned} & \text { " } \mathrm{H}^{* 1} \text { ga-DM35* } \end{aligned}$	$\text { " } 20 \text { gan }{ }^{\star n}$	\square
85-96"				$\text { " } 16 \text { ga-DM35* }$	$\begin{aligned} & \text { " } \mathrm{H}^{* 1} \\ & \text { ga-DM35* } \end{aligned}$	$\text { " } 20 \mathrm{H} \text { ga-DM35* }$
97" up				$\begin{array}{ll} \hline 16 \text { ga-DM35* } \\ \text { "H*" } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { " } \mathrm{H}^{* 1} \end{array}$	$\begin{array}{\|l\|} \hline 20 \mathrm{Ha} \text { ga-DM35* } \\ \hline \end{array}$

Columns denote maximum unreinforced spacing.
No construction defined.
Indicates is the same as last defined cell.
See other options.

$\begin{aligned} & 0.5^{" 1}-10^{n \prime} \\ & \text { W.G. STATIC } \\ & \text { POSITIVE } \end{aligned}$		Table 8 - DM45					
		REINFORCEMENT SPACING					
$\begin{gathered} 0.5^{\prime \prime}-3^{\prime \prime} \\ \text { W.G. STATIC } \\ \text { NEGATIVE } \end{gathered}$		6 '	5'	4'	$3 '$	2.5'	2'
Duct Size							
$\left\|\begin{array}{l} 0 \\ 3 \\ \vdots \\ \hat{0} \\ 0 \\ 0 \end{array}\right\|$	96-150"	18 ga-DM45	20 ga-DM45	20 ga-DM45			
	96-160"		20 ga-DM45	20 ga-DM45			
	96-175"			20 ga-DM45			
$\begin{aligned} & 0 \\ & 3 \\ & \vdots \\ & \vdots \end{aligned}$	96-150"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga-DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	96-160"					$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \\ \hline \end{gathered}$	$\begin{gathered} 20 \mathrm{ga} \text { DM45 } \\ 2 \times 2 \times 3 / 8 \\ \hline \end{gathered}$
	96-175"						$\begin{gathered} 20 \mathrm{ga-DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
$\left\|\begin{array}{c} \text { oi } \\ \vdots \\ \dot{\hat{~}} \end{array}\right\|$	85-120"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga} \text { DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	85-130"					$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	85-140"						$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
$\left\|\begin{array}{c} \text { ó } \\ \vdots \\ \dot{\hat{\sim}} \end{array}\right\|$	85-105"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	85-110"					$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	85-120"						$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \\ \hline \end{gathered}$
$\begin{aligned} & 0 \\ & 3 \\ & 3 \\ & \dot{8} \end{aligned}$	73-96"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	73-100"					$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	73-110"						$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
$\begin{aligned} & 0 \\ & 3 \\ & 30 \end{aligned}$	73-85"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga-DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	73-90"					$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \mathrm{ga-DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	73-96"						$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
$\begin{aligned} & \text { oi } \\ & \text { 3i } \\ & \text { í } \end{aligned}$	55-72"				$\begin{gathered} 18 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} \hline 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	55-75"					$\begin{gathered} 20 \mathrm{ga}-\mathrm{DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$	$\begin{gathered} 20 \text { ga-DM45 } \\ 2 \times 2 \times 3 / 8 \end{gathered}$
	55-82"						$\begin{gathered} 20 \mathrm{ga-DM} 45 \\ 2 \times 2 \times 3 / 8 \end{gathered}$
Columns denote maximum unreinforced spacing.\qquad Indicates is the same as last defined cell.						No construction defined. See other options.	

ALUMINUM CONSTRUCTION GUIDELINES

CONSTRUCTION STANDARDS FOR ALUMINUM DUCTWORK have been included to aid the contractor when USING DM35 ALUMINUM DUCT CONNECTORS.

$\begin{aligned} & \text { 1" W.G. } \\ & \text { POS. } \end{aligned}$	Table 9		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
8" dn	DM35AL @ 4'	.032"	NONE
9, 10"	DM35AL @ 4'	.032"	NONE
11, 12"	DM35AL @ 4'	.032"	NONE
13, 14"	DM35AL @ 4'	.032"	NONE
15, 16"	DM35AL @ 4'	.032"	NONE
17, 18"	DM35AL @ 4'	.032"	NONE
19, 20"	DM35AL @ 4'	.032"	NONE
21, 22"	DM35AL @ 4'	.032"	NONE
23, 24"	DM35AL @ 4'	.032"	NONE
25, 26"	DM35AL @ 4'	.032"	NONE
27, 28 "	DM35AL @ 4'	.032"	NONE
29, 30"	DM35AL @ 4'	.032"	NONE
31-36"	DM35AL @ 4'	.032"	NONE
37-42"	DM35AL @ 4'	.032"	NONE
43-48"	DM35AL @ 4'	.032"	NONE
49-54"	DM35AL @ 4'	.040"	NONE
55-60"	DM35AL @ 4'	.040"	NONE
61-72"	DM35AL @ 4'	.040"	$2 \times 2 \times 1 / 4$ " @ 2 '
73-84"	DM35AL @ 4'	.050"	$2{ }^{1 / 2} \times 2^{1 / 2} \times{ }^{3} / 16$ " @ 2'
85-96"	DM35AL + ROD @ 4'	.050"	$2 \times 2 \times 3 / 1{ }^{\text {¢ }}$ " + ROD @ ${ }^{\prime}$
97" up	DM35AL + ROD @ 4'	.064"	$2{ }^{1 / 2} \times 2^{1 / 2} \times{ }^{3 / 16}{ }^{\prime \prime}+$ ROD @ 2'

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

$\begin{aligned} & \text { 2" W.G. } \\ & \text { POS. } \end{aligned}$	Table 10		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
$8{ }^{\prime \prime} \mathrm{dn}$	DM35AL @ 4'	.032"	NONE
9, 10"	DM35AL @ 4'	.032"	NONE
11, 12"	DM35AL @ 4'	.032"	NONE
13, 14"	DM35AL @ 4'	.032"	NONE
15, 16"	DM35AL @ 4'	.032"	NONE
17, 18"	DM35AL @ 4'	.032"	NONE
19, 20"	DM35AL @ 4'	.032"	NONE
21, 22"	DM35AL @ 4'	.032"	NONE
23, 24"	DM35AL @ 4'	.032"	NONE
25, 26 "	DM35AL @ 4'	.032"	NONE
27, 28 "	DM35AL @ 4'	.032"	NONE
29, 30"	DM35AL @ 4'	.032"	NONE
31-36"	DM35AL @ 4'	.040"	NONE
37-42"	DM35AL @ 4'	.040"	NONE
43-48"	DM35AL @ 4'	.050"	NONE
49-54"	DM35AL @ 4'	.040"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ ¢ @ ${ }^{\prime}$
55-60"	DM35AL @ 4'	.040"	$2 \times 2 \times 1 / 4$ " ${ }^{\text {2 }}$
61-72"	DM35AL @ 4'	. 040 "	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ " ROD @ 2 '
73-84"	DM35AL + ROD @ 4'	.050"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}{ }^{\prime \prime}+$ ROD @ 2 '
85-96"	DM35AL + ROD @ 4'	. 064 "	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ " + ROD @ 2 '
97" up	DM35AL + ROD @ 4'	.064"	$21 / 2 \times 2{ }^{1} / 2 \times 3 / 16^{\prime \prime}+$ ROD @ 2'

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

$\begin{aligned} & \text { 3" W.G. } \\ & \text { POS. } \end{aligned}$	Table 11		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
$8{ }^{\prime \prime} \mathrm{dn}$	DM35AL @ 4'	.040"	NONE
9, 10"	DM35AL @ 4'	.040"	NONE
11, 12"	DM35AL @ 4'	.040"	NONE
13, 14"	DM35AL @ 4'	.040"	NONE
15, 16"	DM35AL @ 4'	.040"	NONE
17, 18"	DM35AL @ 4'	.040"	NONE
19, 20"	DM35AL @ 4'	. 040 "	NONE
21, 22"	DM35AL @ 4'	.040"	NONE
23, 24 "	DM35AL @ 4'	.040"	NONE
25, 26 "	DM35AL @ 4'	.040"	NONE
27, 28 "	DM35AL @ 4'	.040"	NONE
29, 30"	DM35AL @ 4'	.040"	NONE
31-36"	DM35AL @ 4'	.040"	NONE
37-42"	DM35AL @ 4'	.040"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ @ ${ }^{\prime}$
43-48"	DM35AL @ 4'	.040"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ " ROD @ 2'
49-54"	DM35AL @ 4'	. 040 "	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ " ROD @ 2'
55-60"	DM35AL @ 4'	.040"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}+$ ROD @ ${ }^{\prime}$
61-72"	DM35AL + ROD @ 4'	. 040 "	$2 \times 2 \times 3 / 1{ }^{\prime}{ }^{\prime}+$ ROD @ 2 '
73-84"	DM35AL + ROD @ 4'	.050"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}+$ ROD @ ${ }^{\prime}$
85-96"	DM35AL + ROD @ 4'	.064"	$2 \times 2 \times 1 / 4{ }^{\prime \prime}+\mathrm{ROD}$ @ 2'
97" up	DM35AL + ROD @ 4'	.064"	$21 / 2 \times 2{ }^{1} / 2 \times 3 / 16^{\prime \prime}+$ ROD @ 2'

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

$\begin{gathered} 4^{" \prime} \text { W.G. } \\ \text { POS. } \end{gathered}$	Table 12		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
$8{ }^{\prime \prime} \mathrm{dn}$	DM35AL @ 4'	.040"	NONE
9, 10"	DM35AL @ 4'	.040"	NONE
11, 12"	DM35AL @ 4'	.040"	NONE
13, 14"	DM35AL @ 4'	.040"	NONE
15, 16"	DM35AL @ 4'	. 040 "	NONE
17, 18"	DM35AL @ 4'	.040"	NONE
19, 20"	DM35AL @ 4'	.040"	NONE
21, 22"	DM35AL @ 4'	.040"	NONE
23, 24"	DM35AL @ 4'	. 040 "	NONE
25, 26 "	DM35AL @ 4'	. 040	NONE
27, 28 "	DM35AL @ 4'	.040"	NONE
29, 30"	DM35AL @ 4'	.040"	NONE
31-36"	DM35AL @ 4'	.040"	$11 / 2 \times 1 / 2 \times 1 / 8{ }^{\prime \prime}$ @ 2
37-42"	DM35AL @ 4'	. 040 "	$13 / 4 \times 13 / 4 \times 1 / 8^{\prime \prime}$ @ 2 '
43-48"	DM35AL @ 4'	. 040 "	$13 / 4 \times 13 / 4 \times 1 / 8^{\prime \prime}$ @ ${ }^{\prime}$
49-54"	DM35AL @ 4'	.040"	$21 / 2 \times 21 /{ }_{2} \times 1 / 8{ }^{\prime \prime}$ @ ${ }^{\prime}$
55-60"	DM35AL @ 4'	.040"	$2^{1 / 2} \times 2{ }^{1 / 2} \times 1 / 8^{\prime \prime}$ @ ${ }^{\prime}$
61-72"	DM35AL @ 4'	.050"	$21 / 2 \times 21_{2} \times 1 / 8^{\prime \prime}$ @ ${ }^{\prime}$
73-84"	DM35AL + ROD @ 4'	. 064 "	$2^{1 / 2} \times 2^{1 / 2} \times 3 / 8^{\prime \prime}$ @ 2^{\prime}
85-96"	DM35AL + ROD @ 4'	. 064 "	$3 \times 3 \times 3 / 8{ }^{\prime \prime}$ @ 2 '
97" up	DM35AL + ROD @ 4'	. 071 "	$21 / 2 \times 2{ }^{1} / 2 \times 3 / 16^{\prime \prime}+$ ROD @ 2'

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

$\begin{aligned} & \text { 6" W.G. } \\ & \text { POS. } \end{aligned}$	Table 13		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
$8{ }^{\prime \prime} \mathrm{dn}$	DM35AL @ 4'	.040"	NONE
9, 10"	DM35AL @ 4'	.040"	NONE
11, 12"	DM35AL @ 4'	.050"	NONE
13, 14"	DM35AL @ 4'	.050"	NONE
15, 16"	DM35AL @ 4'	.050"	NONE
17, 18"	DM35AL @ 4'	.050"	NONE
19, 20"	DM35AL @ 4'	.050"	NONE
21, 22"	DM35AL @ 4'	.050"	NONE
23, 24"	DM35AL @ 4'	. 064 "	NONE
25, 26"	DM35AL @ 4'	.064"	NONE
27, 28"	DM35AL @ 4'	.064"	NONE
29, 30"	DM35AL @ 4'	.080"	NONE
31-36"	DM35AL @ 4'	.080"	NONE
37-42"	DM35AL @ 4'	.080"	NONE
43-48"	DM35AL @ 4'	.080"	NONE
49-54"	DM35AL @ 4'	.080"	$2 \times 2 \times 3 / 16{ }^{\prime}+$ ROD @ 2 '
55-60"	DM35AL @ 4'	.080"	$2 \times 2 \times 3 / 16{ }^{\prime \prime}+$ ROD @ 2'
61-72"	DM35AL + ROD @ 4'	.080"	$2 \times 2 \times 3 / 1{ }^{\prime \prime}$ + ROD @ 2 '
73-84"	DM35AL + ROD @ 4'	.080"	$2 \times 2 \times 1 / 4{ }^{\prime \prime}+$ ROD @ 2 '
85-96"	DM35AL + ROD @ 4'	.080"	$2 \times 2 \times 1 / 4{ }^{\prime \prime}+\mathrm{ROD}$ @ 2 '
97" up	DM35AL + ROD @ 4'	.080"	$2^{1 / 2} \times 2{ }^{1 / 2} \times 3 / 1{ }^{3}{ }^{\prime}+$ ROD @ 2^{\prime}

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

$\begin{gathered} \text { 10" W.G. } \\ \text { POS. } \end{gathered}$	Table 14		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
$8{ }^{\prime \prime} \mathrm{dn}$	DM35AL @ 4'	.040"	NONE
9, 10"	DM35AL @ 4'	.040"	NONE
11, 12"	DM35AL @ 4'	.040"	NONE
13, 14"	DM35AL @ 4'	.050"	NONE
15, 16"	DM35AL @ 4'	.050"	NONE
17, 18"	DM35AL @ 4'	.050"	NONE
19, 20"	DM35AL @ 4'	. 064 "	NONE
21, 22"	DM35AL @ 4'	.064"	NONE
23, 24"	DM35AL @ 4'	.064"	NONE
25, 26"	DM35AL @ 4'	. 064 "	NONE
27, 28"	DM35AL @ 4'	. 064 "	NONE
29, 30"	DM35AL @ 4'	.040"	$13 / 4 \times 13 / 4 \times 1 / 8{ }^{\prime \prime}$ @ 2'
31-36"	DM35AL @ 4'	. 040 "	$13 / 4 \times 1{ }^{3} /{ }^{1} 1 / 8{ }^{\prime \prime}$ @ ${ }^{\prime}$
37-42"	DM35AL @ 4'	.050"	$21 / 2 \times 21_{2} \times 1 / 8^{\prime \prime}$ @ ${ }^{\prime}$
43-48"	DM35AL @ 4'	.050"	$21 / 2 \times 21 /{ }_{2} \times 1 / 8{ }^{\prime \prime}$ @ ${ }^{\prime}$
49-54"	DM35AL @ 4'	. 064 "	$21_{2} \times 2{ }^{1 / 2} \times{ }^{3 / 16}{ }^{\prime \prime}$ @ 2^{\prime}
55-60"	DM35AL + ROD @ 4'	.064"	$21 / 2 \times 21 / 2 \times 1 / 8^{\prime \prime}+$ ROD @ ${ }^{\prime}$
61-72"	DM35AL + ROD @ 4'	. 071 "	$21 / 2 \times 21_{2} \times 1 /{ }^{\prime \prime}$ + ROD @ 2'
73-84"	DM35AL + ROD @ 4'	.090"	$21_{2} \times 2{ }^{1 / 2} \times 3 / 1{ }^{3}{ }^{\prime \prime}+$ ROD @ 2 '
85-96"	DM35AL + ROD @ 4'	.090"	$21_{2} \times 2{ }^{1 / 2} \times{ }^{3} / 1{ }^{\prime \prime}{ }^{\prime \prime}+$ ROD @ ${ }^{\prime}$
97" up	DM35AL + ROD @ 4'	.090"	$21 / 2 \times 2{ }^{1} / 2 \times 3 / 1{ }^{\prime \prime}$ + ROD @ 2'

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 48" FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD. TIE RODS SHALL BE 1/2" ALUMINUM ROD.

METRIC

FORWARD

The widespread use of the "Ductmate® 25, 35, and 45 Slide-On Systems" makes these duct construction guidelines a necessity.

This manual is based on fundamental, sound engineering principles. The criteria used to establish the tables in this publication are 6.4 mm joint and 19.1 mm sheet deflection limits for ducts over 600 mm wide.

These duct construction standards are based on independent testing using the Ductmate Systems exclusively as manufactured by Ductmate Industries Incorporated U.S.A. No other flange system can be used in conjunction with these tables.

Any reference to SMACNA in this manual refers to the SMACNA 2005 "HVAC Duct Construction Standards, Metal and Flexible," Third Edition.

TABLES

When using the Rectangular Duct Construction Tables in this manual, Reinforcement Spacing refers to both the Ductmate joints and Intermediate Reinforcements (Center Tie Rods or External Stiffeners.)

Ductmate's Rectangular Duct Construction Tables are based on $1800 \mathrm{~mm}, 1500 \mathrm{~mm}$, and 1200 mm duct section lengths. Columns $1800 \mathrm{~mm}, 1500 \mathrm{~mm}$, and 1200 mm are construction guidelines without the use of any joint or intermediate reinforcements.

The $900 \mathrm{~mm}, 7500 \mathrm{~mm}$, and 600 mm columns are used in conjunction with the 1800 mm , 1500 mm , and 1200 mm duct section lengths. These columns provide alternative construction guidelines such as lighter metal gauges, joint tie rods, center tie rods, or external intermediate reinforcements.

When making special fittings, if the duct length matches the $900 \mathrm{~mm}, 750 \mathrm{~mm}$, and 600 mm column spacing, you do not need the CTR or external reinforcement between the joints.

See examples on pages 27-28.

Positive Pressure

This addendum includes positive pressure guidelines for pressure classes up to 2500 Pa .

Negative Pressure

Duct construction tables for $125,250,500$, and 750 Pa . can be used for both positive and negative pressures. For negative pressures greater then 750 Pa , please contact Ductmate Industries or refer to the SMACNA Rectangular Industrial Duct Construction Standards.

Except for aluminum, the guidelines on pages 29-36 can be used on galvanized, galvannealed, 304 and 316 stainless steel, PVC coated, aluminized, and black iron.

Duct construction guidelines for aluminum applications are on pages 38-43.
In a cell, DM25 refers to the Ductmate 25 Connector system, DM35 refers to the Ductmate 35 system, and DM45 refers to the Ductmate 45 system.

When an intermediate reinforcement is required in a cell, there will be an internal tie rod or an external alphabetical option, or both.

CTR (Center Tie Rod) refers to an internal tie rod halfway between the Ductmate joints.
JTR (Joint Tie Rod) refers to an internal tie rod at the Ductmate joints.
See page 26 for CTR and JTR details.
When using conduit as a tie rod for rods up to 900 mm long use 12.7 mm conduit. For rods 901 mm and longer use 19.1 mm conduit.

The maximum distance from the duct wall to a tie rod is 1200 mm on center.
When more than one tie rod is required on the same plane at a joint or reinforcement, the maximum distance between tie rods is 1200 mm on center.

When a CTR and / or JTR is needed on both the width and height dimension of the duct, where the rods intersect, they must be clamped, tied or welded together to prevent vibrating against each other.

If an (*) appears next to the DM25, DM35, DM45, or intermediate reinforcement it indicates that a tie rod is needed.

If an alphabetical letter A through K appears in a cell, it refers to an external intermediate reinforcement option between the Ductmate joints. See the SMACNA profile alternatives for each rigidity class on page 25 .

Table 2-29M							
INTERMEDIATE REINFORCEMENT							
				CHANNEL OR ZEE		HAT SECTION	
	El*	$\begin{gathered} \hline \mathrm{H} \times \mathrm{T}(\mathrm{MIN}) \\ (\mathrm{mm}) \end{gathered}$	$\frac{\mathrm{wT}}{\mathrm{LF}}$	$\begin{gathered} \hline \mathrm{H} \times \mathrm{B} \times \mathrm{T}(\mathrm{MIN}) \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\frac{\frac{\mathrm{WT}}{\mathrm{LF}}}{}$	$\mathrm{H} \times \mathrm{B} \times \mathrm{D} \times \mathrm{T}(\mathrm{MIN})$ (mm)	$\frac{\mathrm{WT}}{\mathrm{LF}}$
A	0.12	Use C		Use B		Use F	
B	0.29	Use C		$19.1 \times 12.7 \times 1.00$	0.36	Use F	
C	0.55	$\begin{aligned} & \text { C } 25 \times 1.61 \\ & \text { C } 19.1 \times 3.2 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 19.1 \times 12.7 \times 1.31 \\ & 25 \times 19.1 \times 1.00 \end{aligned}$	0.46	Use F	
D	0.78	$\begin{aligned} & \text { H } 19.1 \times 3.2 \\ & \text { C } 25 \times 3.2 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.19 \end{aligned}$	$25 \times 19.1 \times 1.31$	0.67	Use F	
E	1.9	$\begin{aligned} & \text { C } 31.8 \times 2.75 \\ & \text { H } 25 \times 3.2 \end{aligned}$	1.34	$51 \times 28.6 \times 1.00$	0.89	Use F	
F	3.7	H 31.8×3.2	1.52	$38.1 \times 19.1 \times 1.31$	0.80	$\begin{aligned} & 38.1 \times 19.1 \times 15.9 \times 1.31 \\ & 38.1 \times 38.1 \times 19.1 \times 1.00 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.24 \end{aligned}$
G	4.5	38.1×3.2	1.83	$38.1 \times 19.1 \times 1.61$	0.98	$38.1 \times 19.1 \times 15.9 \times 1.31$	1.19
H	7.6	$\begin{aligned} & 38.1 \times 4.8 \\ & 51 \times 3.2 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.46 \end{aligned}$	$38.1 \times 19.1 \times 3.2$	1.95	$\begin{aligned} & 38.1 \times 38.1 \times 19.1 \times 1.31 \\ & 51 \times 25 \times 19.1 \times 1.00 \end{aligned}$	$\begin{aligned} & 1.61 \\ & 1.34 \end{aligned}$
I	20	$\begin{aligned} & \text { C } 51 \times 4.8 \\ & 63.5 \times 3.2 \end{aligned}$	$\begin{aligned} & 3.63 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 51 \times 28.6 \times 2.5 \\ & 76 \times 28.6 \times 1.61 \end{aligned}$	$\begin{aligned} & 2.38 \\ & 1.56 \end{aligned}$	$51 \times 25 \times 19.1 \times 1.61$	2.14
J	23	$\begin{aligned} & \text { H } 51 \times 4.8 \\ & \text { C } 51 \times 6.4 \\ & 63.5 \times 3.2(+) \end{aligned}$	$\begin{aligned} & 3.63 \\ & 4.76 \\ & 3.13 \end{aligned}$	$51 \times 28.6 \times 3.2$	2.75	$\begin{aligned} & 51 \times 25 \times 19.1 \times 2.5 \\ & 63.5 \times 51 \times 19.1 \times 1.31 \end{aligned}$	$\begin{aligned} & 3.65 \\ & 2.28 \end{aligned}$
K	30	63.5×4.8	4.61	$76 \times 28.6 \times 2.5$	2.98	$\begin{aligned} & 63.5 \times 51 \times 19.1 \times 1.61 \\ & 76 \times 38.1 \times 19.1 \times 1.61 \end{aligned}$	$\begin{aligned} & 2.80 \\ & 2.98 \end{aligned}$
L	60	H 63.5×6.4	6.10	$76 \times 28.6 \times 3.2$	3.40	$\begin{aligned} & 63.5 \times 51 \times 19.1 \times 3.2 \\ & 76 \times 38.1 \times 19.1 \times 2.75 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.06 \end{aligned}$

See Section 2.1.4 *Effective El is number listed times 10^{5} before adjustment for bending moment capacity. C and H denote cold formed and hot rolled ratings; when neither is listed, either may be used. See tie rod options elsewhere.

NOTES: a. (+) indicates positive pressure use only.
b. Hat Section Dimension "B" may be equal to 2 times Dimension " H " with the same reinforcement class rating.

EZ-ROD / TIE ROD CONSTRUCTION USE FOR SHOP FABRICATED OR KNOCKED DOWN DUCTWORK

DETAIL A

DETAIL B

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.
No construction defined. See other options.

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.
No construction defined. See other options.

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

Columns denote maximum unreinforced spacing.
Indicates is the same as last defined cell.
No construction defined. See other options.

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

2500 PA STATIC POS.	Table 21					
	REINFORCEMENT SPACING					
	1800 mm	1500 mm	1200 mm	900 mm	750 mm	600 mm
$\begin{gathered} \hline \text { Duct Size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$						
200 \& under	$1.00 \mathrm{ga}-\mathrm{DM} 25$			$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "C" } \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{ga-DM} 25 \\ & \text { "C" } \end{aligned}$	-
229-250	1.00 ga-DM25			$0.70 \text { ga-DM25 }$ "C"	$\begin{aligned} & 0.55 \text { ga-DM25 } \\ & \text { "C" } \end{aligned}$	-
251-300	1.00 ga-DM25			$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	$\begin{aligned} & 0.55 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	
301-350	1.00 ga-DM25			$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	$\begin{aligned} & 0.55 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	-
351-400	1.00 ga-DM25			$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{ga-DM} 25 \\ & \text { "D" } \end{aligned}$	-
401-450	1.00 ga-DM25			$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	$\begin{aligned} & 0.55 \text { ga-DM25 } \\ & \text { "D" } \end{aligned}$	-
451-500	1.31 ga-DM25	1.00 ga-DM25	-	$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "E" } \end{aligned}$	$0.55 \text { ga-DM25 }$	
501-550	1.31 ga-DM25	$1.00 \mathrm{ga-DM25}$,	$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "E" } \end{aligned}$	$0.55 \text { ga-DM25 }$	
551-600	1.31 ga-DM25	1.00 ga-DM25		"E" 0 " ga-DM25	$\begin{aligned} & 0.55 \mathrm{ga-DM} 25 \\ & \text { "E" } \end{aligned}$	
601-650	1.31 ga-DM25	1.00 ga-DM25		$\begin{aligned} & 0.70 \text { ga-DM25 } \\ & \text { "E" } \end{aligned}$	$0.55 \text { ga-DM25 }$	-
651-700	1.31 ga-DM25	$1.00 \mathrm{ga-DM} 25$		"E" 0 " ga-DM25	$\begin{aligned} & 0.55 \text { ga-DM25 } \\ & \text { "E" } \end{aligned}$	
701-750	1.31 ga-DM25	$1.00 \mathrm{ga-DM25}$		"E" 0 ga-DM25	$0.55 \mathrm{ga-DM} 25$	
751-900				$\begin{aligned} & 0.85 \mathrm{ga-DM} 35 \\ & \text { "E" } \end{aligned}$	$\begin{aligned} & \hline 0.70 \text { ga-DM35 } \\ & \text { "E" } \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{ga}-\mathrm{DM} 35 \\ & \text { "E" } \end{aligned}$
901-1000				"F" ga-DM35	$\begin{aligned} & 0.85 \text { ga-DM35 } \\ & \text { "F" } \end{aligned}$	0.70 ga-DM35
1001-1200				$\begin{aligned} & \hline 1.00 \text { ga-DM35 } \\ & \text { "G" } \end{aligned}$	$\begin{aligned} & \hline 0.85 \text { ga-DM35 } \\ & \text { "G"" } \end{aligned}$	$\begin{aligned} & 0.70 \text { ga-DM35 } \\ & \text { "G" } \end{aligned}$
1201-1300				$\begin{aligned} & \hline \text { 1.00 ga-DM35 } \\ & \text { "H" } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.85 \text { ga-DM35 } \\ \text { "H" } \\ \hline \end{array}$	$\begin{aligned} & 0.70 \text { ga-DM35 } \\ & \text { "H" } \\ & \hline \end{aligned}$
1301-1500				$\begin{aligned} & 1.00 \text { ga-DM35* } \\ & \text { " } \mathrm{H} * \text { " } \end{aligned}$	$0.85 \text { ga-DM35* }$	-
1501-1800				${ }_{\text {"H*" }} 1.31$ ga-DM35*	1.00 ga-DM35*	-
1801-2100				${ }_{\text {"H*" }} 1.31$ ga-DM35*	$\begin{aligned} & 1.00 \mathrm{ga-DM} 35^{*} \\ & \text { "H*" } \end{aligned}$	
2101-2400				${ }_{\text {"H*" }}^{1.61}$ ga-DM35*	" 1.31 " ga-DM35*	" $\mathrm{H} \mathrm{H}^{* "}$ ga-DM35*
2401-2700				$\begin{aligned} & 1.61 \text { ga-DM35* } \\ & \text { " }{ }^{*} \text { " } \end{aligned}$	$\begin{array}{\|c\|} \hline 1.31 \text { ga-DM35* } \end{array}$	$\begin{aligned} & \text { "H*" ga-DM35* } \\ & \text { "H } \end{aligned}$

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

125-1500 PA STATIC POSITIVE		Table 22 - DM45					
		REINFORCEMENT SPACING					
125-750 PA STATIC NEGATIVE		1800 mm	1500 mm	1200 mm	900 mm	750 mm	600 mm
Duct Size (mm)							
$$	$2438.4-$	1.31 ga-DM45	1.00 ga-DM45	1.00 ga-DM45			
	2438.44064 mm		1.00 ga-DM45	1.00 ga-DM45			
	$2438.4-$			$1.00 \mathrm{ga-DM45}$			
$\begin{aligned} & \mathbb{\nwarrow} \\ & \stackrel{N}{N} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{gathered} 2438.4- \\ 3810 \mathrm{~mm} \end{gathered}$				1.31 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{gathered} 2438.4- \\ 4064 \mathrm{~mm} \end{gathered}$					$\begin{gathered} \hline 1.00 \mathrm{ga-DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{gathered} 2438.4- \\ 4445 \mathrm{~mm} \end{gathered}$						$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
$\begin{aligned} & \pi \\ & \text { a } \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{array}{c\|} 2159- \\ 3048 \mathrm{~mm} \end{array}$				$\begin{gathered} 1.31 \mathrm{ga-DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{gathered}$
	$\begin{gathered} 2159- \\ 3302 \mathrm{~mm} \end{gathered}$					$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
	$\begin{gathered} 2159- \\ 3556 \mathrm{~mm} \end{gathered}$						$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga-DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
$\begin{aligned} & \mathbb{a} \\ & 0 \\ & \mathrm{n} \end{aligned}$	$\begin{gathered} 2159- \\ 2667 \mathrm{~mm} \end{gathered}$				$\begin{gathered} 1.31 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{array}{c\|} 2159- \\ 2794 \mathrm{~mm} \end{array}$					$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{gathered} 2159- \\ 3048 \mathrm{~mm} \end{gathered}$						$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
	$\begin{gathered} 854.2- \\ 2438.4 \\ \mathrm{~mm} \end{gathered}$				1.31 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
	$\begin{gathered} 854.2- \\ 2540 \mathrm{~mm} \end{gathered}$					$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{gathered} 854.2- \\ 2794 \mathrm{~mm} \end{gathered}$						$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & \text { n } \end{aligned}$	$\begin{gathered} 854.2- \\ 2159 \mathrm{~mm} \end{gathered}$				$\begin{array}{\|c\|} \hline 1.31 \mathrm{ga-DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$	$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$
	$\begin{gathered} 854.2- \\ 2286 \mathrm{~mm} \end{gathered}$					1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
	$\begin{aligned} & 854.2- \\ & 2438.4 \end{aligned}$ mm						$\begin{gathered} 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{gathered}$
$\begin{aligned} & \mathbb{a} \\ & \hline 0 \\ & \text { Non } \end{aligned}$	$\begin{gathered} 1397- \\ 1828.8 \\ \mathrm{~mm} \\ \hline \end{gathered}$				1.31 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$
	$\begin{gathered} 1397- \\ 1905 \mathrm{~mm} \end{gathered}$					1.00 ga-DM45 $50.8 \times 50.8 \times 9.525 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \\ \hline \end{array}$
	$\begin{gathered} 1397- \\ 2082.8 \\ \mathrm{~mm} \\ \hline \end{gathered}$						$\begin{array}{\|c\|} \hline 1.00 \mathrm{ga}-\mathrm{DM} 45 \\ 50.8 \times 50.8 \times 9.525 \mathrm{~mm} \end{array}$
Columns denote maximum unreinforced spacing.						No construction defined. See other options.	

ALUMINUM CONSTRUCTION GUIDELINES

CONSTRUCTION STANDARDS FOR ALUMINUM DUCTWORK have been included to aid the contractor when USING DM35 ALUMINUM DUCT CONNECTORS.

DM35 AL

$\begin{aligned} & 250 \text { PA } \\ & \text { POS. } \end{aligned}$	Table 23		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
Duct Size (mm)	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
200 \& under	DM35AL @ 1200 mm	0.813 mm	NONE
229-250	DM35AL @ 1200 mm	0.813 mm	NONE
251-300	DM35AL @ 1200 mm	0.813 mm	NONE
301-350	DM35AL @ 1200 mm	0.813 mm	NONE
351-400	DM35AL @ 1200 mm	0.813 mm	NONE
401-450	DM35AL @ 1200 mm	0.813 mm	NONE
451-500	DM35AL @ 1200 mm	0.813 mm	NONE
501-550	DM35AL @ 1200 mm	0.813 mm	NONE
551-600	DM35AL @ 1200 mm	0.813 mm	NONE
601-650	DM35AL @ 1200 mm	0.813 mm	NONE
651-700	DM35AL @ 1200 mm	0.813 mm	NONE
701-750	DM35AL @ 1200 mm	0.813 mm	NONE
751-900	DM35AL @ 1200 mm	0.813 mm	NONE
901-1000	DM35AL @ 1200 mm	0.813 mm	NONE
1001-1200	DM35AL @ 1200 mm	0.813 mm	NONE
1201-1300	DM35AL @ 1200 mm	1.016 mm	NONE
1301-1500	DM35AL @ 1200 mm	1.016 mm	NONE
1501-1800	DM35AL @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 6.35 \mathrm{~mm}$ @ 609.6 mm
1801-2100	DM35AL @ 1200 mm	1.27 mm	$63.5 \times 63.5 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
2101-2400	DM35AL + ROD @ 1200 mm	1.27 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
2401-2700	DM35AL + ROD @ 1200 mm	1.63 mm	$63.5 \times 63.5 \times 4.763 \mathrm{~mm}$ @ 609.6 mm

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

500 PA POS.	Table 24		

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

DUCTMATE RECTANGULAR DUCT CONSTRUCTION STANDARDS

$\begin{aligned} & 750 \text { PA } \\ & \text { POS. } \end{aligned}$	Table 25		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
$\begin{gathered} \hline \text { Duct Size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
200 \& under	DM35AL @ 1200 mm	1.016 mm	NONE
229-250	DM35AL @ 1200 mm	1.016 mm	NONE
251-300	DM35AL @ 1200 mm	1.016 mm	NONE
301-350	DM35AL @ 1200 mm	1.016 mm	NONE
351-400	DM35AL @ 1200 mm	1.016 mm	NONE
401-450	DM35AL @ 1200 mm	1.016 mm	NONE
451-500	DM35AL @ 1200 mm	1.016 mm	NONE
501-550	DM35AL @ 1200 mm	1.016 mm	NONE
551-600	DM35AL @ 1200 mm	1.016 mm	NONE
601-650	DM35AL @ 1200 mm	1.016 mm	NONE
651-700	DM35AL @ 1200 mm	1.016 mm	NONE
701-750	DM35AL @ 1200 mm	1.016 mm	NONE
751-900	DM35AL @ 1200 mm	1.016 mm	NONE
901-1000	DM35AL @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1001-1200	DM35AL @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1201-1300	DM35AL @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1301-1500	DM35AL @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1501-1800	DM35AL + ROD @ 1200 mm	1.016 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1801-2100	DM35AL + ROD @ 1200 mm	1.27 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
2101-2400	DM35AL + ROD @ 1200 mm	1.63 mm	$50.8 \times 50.8 \times 6.35 \mathrm{~mm}$ @ 609.6 mm
2401-2700	DM35AL + ROD @ 1200 mm	1.63 mm	$63.5 \times 63.5 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

$\begin{gathered} 1000 \text { PA } \\ \text { POS. } \end{gathered}$	Table 26		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
$\begin{gathered} \hline \text { Duct Size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
200 \& under	DM35AL @ 1200 mm	1.016 mm	NONE
229-250	DM35AL @ 1200 mm	1.016 mm	NONE
251-300	DM35AL @ 1200 mm	1.016 mm	NONE
301-350	DM35AL @ 1200 mm	1.016 mm	NONE
351-400	DM35AL @ 1200 mm	1.016 mm	NONE
401-450	DM35AL @ 1200 mm	1.016 mm	NONE
451-500	DM35AL @ 1200 mm	1.016 mm	NONE
501-550	DM35AL @ 1200 mm	1.016 mm	NONE
551-600	DM35AL @ 1200 mm	1.016 mm	NONE
601-650	DM35AL @ 1200 mm	1.016 mm	NONE
651-700	DM35AL @ 1200 mm	1.016 mm	NONE
701-750	DM35AL @ 1200 mm	1.016 mm	NONE
751-900	DM35AL @ 1200 mm	1.016 mm	$38.1 \times 12.7 \times 3.175 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
901-1000	DM35AL @ 1200 mm	1.016 mm	$44.5 \times 44.5 \times 3.175 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1001-1200	DM35AL @ 1200 mm	1.016 mm	$44.5 \times 44.5 \times 3.175 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1201-1300	DM35AL @ 1200 mm	1.016 mm	$63.5 \times 63.5 \times 3.175 \mathrm{~mm}$ @ 609.6 mm
1301-1500	DM35AL @ 1200 mm	1.016 mm	$63.5 \times 63.5 \times 3.175 \mathrm{~mm}$ @ 609.6 mm
1501-1800	DM35AL @ 1200 mm	1.27 mm	$63.5 \times 63.5 \times 3.175 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
1801-2100	DM35AL + ROD @ 1200 mm	1.63 mm	$63.5 \times 63.5 \times 9.525 \mathrm{~mm} @ 609.6 \mathrm{~mm}$
2101-2400	DM35AL + ROD @ 1200 mm	1.63 mm	$76.2 \times 76.2 \times 9.525 \mathrm{~mm}$ @ 609.6 mm
2401-2700	DM35AL + ROD @ 1200 mm	1.8034 mm	$63.5 \times 63.5 \times 4.763 \mathrm{~mm} @ 609.6 \mathrm{~mm}$

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

$\begin{aligned} & 1500 \text { PA } \\ & \text { POS. } \end{aligned}$	Table 27		
	ALUMINUM DUCT CONSTRUCTION (AS PER SMACNA DUCT CONTRUCTION STANDARDS)		
$\begin{gathered} \hline \text { Duct Size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Joint Spacing	Duct Wall Thickness	Intermediate Reinforcement
200 \& under	DM35AL @ 1200 mm	1.016 mm	NONE
229-250	DM35AL @ 1200 mm	1.016 mm	NONE
251-300	DM35AL @ 1200 mm	1.27 mm	NONE
301-350	DM35AL @ 1200 mm	1.27 mm	NONE
351-400	DM35AL @ 1200 mm	1.27 mm	NONE
401-450	DM35AL @ 1200 mm	1.27 mm	NONE
451-500	DM35AL @ 1200 mm	1.27 mm	NONE
501-550	DM35AL @ 1200 mm	1.27 mm	NONE
551-600	DM35AL @ 1200 mm	1.63 mm	NONE
601-650	DM35AL @ 1200 mm	1.63 mm	NONE
651-700	DM35AL @ 1200 mm	1.63 mm	NONE
701-750	DM35AL @ 1200 mm	2.032 mm	NONE
751-900	DM35AL @ 1200 mm	2.032 mm	NONE
901-1000	DM35AL @ 1200 mm	2.032 mm	NONE
1001-1200	DM35AL @ 1200 mm	2.032 mm	NONE
1201-1300	DM35AL @ 1200 mm	2.032 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm}$ @ 609.6 mm
1301-1500	DM35AL @ 1200 mm	2.032 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm}$ @ 609.6 mm
1501-1800	DM35AL + ROD @ 1200 mm	2.032 mm	$50.8 \times 50.8 \times 4.763 \mathrm{~mm}$ @ 609.6 mm
1801-2100	DM35AL + ROD @ 1200 mm	2.032 mm	$50.8 \times 50.8 \times 6.35 \mathrm{~mm}$ @ 609.6 mm
2101-2400	DM35AL + ROD @ 1200 mm	2.032 mm	$50.8 \times 50.8 \times 6.35 \mathrm{~mm}$ @ 609.6 mm
2401-2700	DM35AL + ROD @ 1200 mm	2.032 mm	$63.5 \times 63.5 \times 4.763 \mathrm{~mm}$ @ 609.6 mm

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

2500 PA POS.	Table 28		

DM35AL IS EQUIVALENT TO A SMACNA "H" CLASS STIFFENER.
TIE ROD SPACING SHALL BE NO GREATER THAN 1200 MM FROM DUCTWALL TO TIE ROD OR TIE ROD TO TIE ROD.

TIE RODS SHALL BE 125 MM ALUMINUM ROD.

When heavy duty ductwork requires heavy duty connections, the Ductmate 45° connector system provides big solutions!

Equal in strength to $2-1 / 2^{\prime \prime} \times 2-1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$ angle, the Ductmate 45 self-sealing rectangular duct connector system has the strength you need to connect the biggest duct imaginable, without the labor intensive fabrication processes of drilling bolt holes, welding frames or applying rust proof coatings commonly associated with companion angle connections.

Engineered to exceed industry standards on even the largest applications and backed by rigorous testing, the Ductmate 45 system gives you the performance you need for high pressure critical air systems.

Available in a wide range of alloys, Ductmate 45 is the right solution for the most extreme applications such as oil and gas extraction platforms, waste water treatment facilities, pharmaceutical and food processing plants, just to name a few.

Next time you are faced with a large scale duct system, consider a connector designed to meet the challenge and reduce your installed costs; consider the Ductmate 45 rectangular duct connector system.

